
Package: sambia (via r-universe)
September 14, 2024

Type Package

Title A Collection of Techniques Correcting for Sample Selection Bias

Version 0.1.0

Author Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl,
Christiane Fuchs

Maintainer Norbert Krautenbacher <norbert.krautenbacher@tum.de>

Description A collection of various techniques correcting statistical
models for sample selection bias is provided. In particular,
the resampling-based methods ``stochastic inverse-probability
oversampling'' and ``parametric inverse-probability bagging'' are
placed at the disposal which generate synthetic observations
for correcting classifiers for biased samples resulting from
stratified random sampling. For further information, see the
article Krautenbacher, Theis, and Fuchs (2017)
<doi:10.1155/2017/7847531>. The methods may be used for further
purposes where weighting and generation of new observations is
needed.

License GPL-3

LazyData TRUE

RoxygenNote 6.0.1.9000

NeedsCompilation no

Imports stats, mvtnorm, dplyr, smotefamily, e1071, ranger, pROC, FNN

Date/Publication 2018-06-06 11:27:57 UTC

Repository https://nkathh.r-universe.dev

RemoteUrl https://github.com/cran/sambia

RemoteRef HEAD

RemoteSha 193db6f14b8abdad062bc9562653d6e8f4cfe41d

Contents
costing . 2

1

https://doi.org/10.1155/2017/7847531

2 costing

genSample . 4
IPbag . 6
ipOversampling . 8
rejSamp . 9
smoteMod . 10
smoteNew . 12
synthIPbag . 13

Index 16

costing Predicting outcomes using Costing.

Description

This method trains classifiers by correcting them for sample selection bias via Costing, a method
proposed in Zadrozny et al. (2003) . This method is similar to sambia’s IP bagging function in
terms of resampling from the learning data and aggregation of the learned algorithms. It differs in
the implementation of resampling. Observations from the original data enters a resampled data set
only once at most.

Usage

costing(..., learner, list.train.learner, list.predict.learner, n.bs,
mod = FALSE)

Arguments

... see the parameter rejSamp() of package sambia.

learner a character indicating which classifier is used to train. Note: set learner=’rangerTree’
if random forest should be applied as in Krautenbacher et al. (2017), i.e. the cor-
rection step is incorporated in the inherent random forest resampling procedure.

list.train.learner

a list of parameters specific to the classifier that will be trained. Note that the
parameter ’data’ need not to be provided in this list since the training data which
the model will learn on is already attained by new sampled data produced by the
method rejSamp().

list.predict.learner

a list of parameters specifiying how to predict new data given the trained model.
(This trained model is uniquely determined by parameters ’learner’ and ’list.train.learner’

n.bs number of bootstramp samples.

mod If mod = TRUE: strategy for always having (at least) two outcome classes in
subsets.

Author(s)

Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl, Christiane Fuchs

costing 3

References

Zadrozny, B., Langford, J., & Abe, N. (2003, November). Cost-sensitive learning by cost-proportionate
example weighting. In Data Mining, 2003. ICDM 2003. Third IEEE International Conference on
(pp. 435-442). IEEE.

Krautenbacher, N., Theis, F. J., & Fuchs, C. (2017). Correcting Classifiers for Sample Selection
Bias in Two-Phase Case-Control Studies. Computational and mathematical methods in medicine,
2017.

Examples

simulate data for a population
require(pROC)

set.seed(1342334)
N = 100000
x1 <- rnorm(N, mean=0, sd=1)
x2 <- rt(N, df=25)
x3 <- x1 + rnorm(N, mean=0, sd=.6)
x4 <- x2 + rnorm(N, mean=0, sd=1.3)
x5 <- rbinom(N, 1, prob=.6)
x6 <- rnorm(N, 0, sd = 1) # noise not known as variable
x7 <- x1*x5 # interaction
x <- cbind(x1, x2, x3, x4, x5, x6, x7)

stratum variable (covariate)
xs <- c(rep(1,0.1*N), rep(0,(1-0.1)*N))

effects
beta <- c(-1, 0.2, 0.4, 0.4, 0.5, 0.5, 0.6)
beta0 <- -2

generate binary outcome
linpred.slopes <- log(0.5)*xs + c(x %*% beta)
eta <- beta0 + linpred.slopes

p <- 1/(1+exp(-eta)) # this is the probability P(Y=1|X), we want the binary outcome however:
y<-rbinom(n=N, size=1, prob=p) #

population <- data.frame(y,xs,x)

draw "given" data set for training
sel.prob <- rep(1,N)
sel.prob[population$xs == 1] <- 9
sel.prob[population$y == 1] <- 8
sel.prob[population$y == 1 & population$xs == 1] <- 150
ind <- sample(1:N, 200, prob = sel.prob)

data = population[ind,]

calculate weights from original numbers for xs and y
w.matrix <- table(population$y, population$xs)/table(data$y, data$xs)

4 genSample

w <- rep(NA, nrow(data))
w[data$y==0 & data$xs ==0] <- w.matrix[1,1]
w[data$y==1 & data$xs ==0] <- w.matrix[2,1]
w[data$y==0 & data$xs ==1] <- w.matrix[1,2]
w[data$y==1 & data$xs ==1] <- w.matrix[2,2]

draw a test data set
newdata = population[sample(1:N, size=200),]

n.bs = 20
pred_nb <- sambia::costing(data = data, weights = w,

learner='naiveBayes', list.train.learner = list(formula=formula(y~.)),
list.predict.learner = list(newdata=newdata, type="raw"),n.bs = n.bs, mod=TRUE)

roc(newdata$y, pred_nb, direction="<")

genSample Generate synthetic observations using inverse-probability weights

Description

This method corrects a given data set for sample selection bias by generating new observations
via Stochastic inverse-probability oversampling or parametric inverse-probability sampling using
inverse-probability weights and information on covariance structure of the given strata (Krauten-
bacher et al, 2017).

Usage

genSample(data, strata.variables = NULL, stratum = NULL, weights = rep(1,
nrow(data)), distr = "mvnorm", type = c("parIP", "stochIP"))

Arguments

data a data frame containing the observations rowwise, along with their correspond-
ing categorical strata feature.

strata.variables

a character vector of the names determined by the categorical stratum features.

stratum a numerical vector of the length of the number of rows of the data specifying the
stratum ID. Either ’strata.variables’ or ’stratum’ has to be provided. This vector
will not be included as a column in the resulting data set.

weights a numerical vector whose length must coincide with the number of the rows of
data. The i-th value contains the inverse-probability e.g. determines how often
the i-th observation of data shall be replicated.

distr character object that describes the distribution

type character which decides which method is used to correct a given data set for
sample selection bias. Stochastic Inverse-Probabiltiy oversampling is applied if
type = ’stochIP’ or Parametric Inverse-Probability Bagging if type = ’parIP’.

genSample 5

Value

$data data frame containing synthetic data which is corrected for sample selection bias by gen-
erating new observations via Stochastic inverse-probability oversampling or parametric inverse-
probability oversampling.

$orig.data original data frame which shall to corrected

$stratum vector containing the stratum of each observation

$method a character indicating which method was used. If method = ’stochIP’ then Stochastic
Inverse-Probabiltiy oversampling was used, if method = ’parIP’ the Parametric Inverse-Probability
sampling was used.

$strata.tbl a data frame containing all variables and their feature occurences

$N number of rows in data

$n number of rows in original data

Author(s)

Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl, Christiane Fuchs

References

Krautenbacher, N., Theis, F. J., & Fuchs, C. (2017). Correcting Classifiers for Sample Selection
Bias in Two-Phase Case-Control Studies. Computational and mathematical methods in medicine,
2017.

Examples

simulate data for a population
require(pROC)

set.seed(1342334)
N = 100000
x1 <- rnorm(N, mean=0, sd=1)
x2 <- rt(N, df=25)
x3 <- x1 + rnorm(N, mean=0, sd=.6)
x4 <- x2 + rnorm(N, mean=0, sd=1.3)
x5 <- rbinom(N, 1, prob=.6)
x6 <- rnorm(N, 0, sd = 1) # noise not known as variable
x7 <- x1*x5 # interaction
x <- cbind(x1, x2, x3, x4, x5, x6, x7)

stratum variable (covariate)
xs <- c(rep(1,0.1*N), rep(0,(1-0.1)*N))

effects
beta <- c(-1, 0.2, 0.4, 0.4, 0.5, 0.5, 0.6)
beta0 <- -2

generate binary outcome
linpred.slopes <- log(0.5)*xs + c(x %*% beta)
eta <- beta0 + linpred.slopes

6 IPbag

p <- 1/(1+exp(-eta)) # this is the probability P(Y=1|X), we want the binary outcome however:
y<-rbinom(n=N, size=1, prob=p) #

population <- data.frame(y,xs,x)

draw "given" data set
sel.prob <- rep(1,N)
sel.prob[population$xs == 1] <- 9
sel.prob[population$y == 1] <- 8
sel.prob[population$y == 1 & population$xs == 1] <- 150
ind <- sample(1:N, 200, prob = sel.prob)

data = population[ind,]

calculate weights from original numbers for xs and y
w.matrix <- table(population$y, population$xs)/table(data$y, data$xs)
w <- rep(NA, nrow(data))
w[data$y==0 & data$xs ==0] <- w.matrix[1,1]
w[data$y==1 & data$xs ==0] <- w.matrix[2,1]
w[data$y==0 & data$xs ==1] <- w.matrix[1,2]
w[data$y==1 & data$xs ==1] <- w.matrix[2,2]
parametric IP bootstrap sample
sample1 <- sambia::genSample(data=data, strata.variables = c('y', 'xs'),

weights = w, type='parIP')
stochastic IP oversampling; treating 'y' and 'xs' as usual input variable
but using strata info unambiguously defined by the weights w
sample2 <- sambia::genSample(data=data,

weights = w, type='stochIP', stratum= round(w))

IPbag Predicting outcomes using non-parametric Inverse-Probability bag-
ging

Description

This method trains classifiers by correcting them for sample selection bias via non-parametric
inverse-probability bagging. This method fits classifiers from different resampled data whose ob-
servations are increased per stratum to correct for the bias in the original sample. The so attained
ensemble of predictors is aggregated by averaging.

Usage

IPbag(..., learner, list.train.learner, list.predict.learner, n.bs)

Arguments

... see the parameter ipOversampling() of package sambia.

IPbag 7

learner a character indicating which classifier is used to train. Note: set learner=’rangerTree’
if random forest should be applied as in Krautenbacher et al. (2017), i.e. the cor-
rection step is incorporated in the inherent random forest resampling procedure.

list.train.learner

a list of parameters specific to the classifier that will be trained. Note that the
parameter ’data’ need not to be provided in this list since the training data which
the model will learn on is already attained by new sampled data produced by the
method genSample().

list.predict.learner

a list of parameters specifiying how to predict new data given the learned model.
(This learned model is uniquely determined by parameters ’learner’ and ’list.train.learner’).

n.bs number of bootstramp samples.

Author(s)

Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl, Christiane Fuchs

References

Krautenbacher, N., Theis, F. J., & Fuchs, C. (2017). Correcting Classifiers for Sample Selection
Bias in Two-Phase Case-Control Studies. Computational and mathematical methods in medicine,
2017.

Examples

simulate data for a population
require(pROC)

set.seed(1342334)
N = 100000
x1 <- rnorm(N, mean=0, sd=1)
x2 <- rt(N, df=25)
x3 <- x1 + rnorm(N, mean=0, sd=.6)
x4 <- x2 + rnorm(N, mean=0, sd=1.3)
x5 <- rbinom(N, 1, prob=.6)
x6 <- rnorm(N, 0, sd = 1) # noise not known as variable
x7 <- x1*x5 # interaction
x <- cbind(x1, x2, x3, x4, x5, x6, x7)

stratum variable (covariate)
xs <- c(rep(1,0.1*N), rep(0,(1-0.1)*N))

effects
beta <- c(-1, 0.2, 0.4, 0.4, 0.5, 0.5, 0.6)
beta0 <- -2

generate binary outcome
linpred.slopes <- log(0.5)*xs + c(x %*% beta)
eta <- beta0 + linpred.slopes

p <- 1/(1+exp(-eta)) # this is the probability P(Y=1|X), we want the binary outcome however:

8 ipOversampling

y<-rbinom(n=N, size=1, prob=p) #

population <- data.frame(y,xs,x)

draw "given" data set for training
sel.prob <- rep(1,N)
sel.prob[population$xs == 1] <- 9
sel.prob[population$y == 1] <- 8
sel.prob[population$y == 1 & population$xs == 1] <- 150
ind <- sample(1:N, 200, prob = sel.prob)

data = population[ind,]

calculate weights from original numbers for xs and y
w.matrix <- table(population$y, population$xs)/table(data$y, data$xs)
w <- rep(NA, nrow(data))
w[data$y==0 & data$xs ==0] <- w.matrix[1,1]
w[data$y==1 & data$xs ==0] <- w.matrix[2,1]
w[data$y==0 & data$xs ==1] <- w.matrix[1,2]
w[data$y==1 & data$xs ==1] <- w.matrix[2,2]

draw a test data set
newdata = population[sample(1:N, size=200),]

n.bs = 5
pred_nb <- sambia::IPbag(data = data, weights = w,

learner='naiveBayes', list.train.learner = list(formula=formula(y~.)),
list.predict.learner = list(newdata=newdata, type="raw"),
n.bs = n.bs)

roc(newdata$y, pred_nb, direction="<")

ipOversampling Plain replication of each observation by inverse-probability weights

Description

This method corrects for the sample selection bias by the plain replication of each observation in the
sample according to its IP weight, i.e. in a stratified random sample one replicates an observation
of stratum h by the factor w_h.

Usage

ipOversampling(data, weights, normalize = FALSE)

Arguments

data a data frame containing the observations rowwise, along with their correspond-
ing categorical strata feature(s).

rejSamp 9

weights a numerical vector whose length must coincide with the number of the rows of
data. The i-th value contains the inverse-probability e.g. determines how often
the i-th observation of data shall be replicated.

normalize If weight vector should be normalized, i.e. the smallest entry of the vector will
be set to 1.

Details

If the numeric vector contains numbers which are not natural but real, they will be rounded.

Author(s)

Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl, Christiane Fuchs

Examples

library(smotefamily)
library(sambia)
data.example <- sample_generator(100,ratio = 0.80)
result <- gsub('n','0',data.example[,'result'])
result <- gsub('p','1',result)
data.example[,'result'] <- as.numeric(result)
weights <- data.example[,'result']
weights <- ifelse(weights==1,1,4)
sample <- sambia::ipOversampling(data.example,weights)

rejSamp Rejection Sampling is a method used in sambia’s function ’costing’
(Krautenbacher et al, 2017).

Description

Rejection Sampling is a method used in sambias costing function. It is sampling scheme that allows
us to draw examples independently from a distribution X, given examples drawn independently
from distribution Y.

Usage

rejSamp(data, weights)

Arguments

data a data frame containing the observations rowwise, along with their correspond-
ing categorical strata feature

weights a numerical vector whose length must coincide with the number of the rows of
data. The i-th value contains the inverse-probability e.g. determines how often
the i-th observation of data shall be replicated.

10 smoteMod

Author(s)

Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl, Christiane Fuchs

References

Krautenbacher, N., Theis, F. J., & Fuchs, C. (2017). Correcting Classifiers for Sample Selection
Bias in Two-Phase Case-Control Studies. Computational and mathematical methods in medicine,
2017.

Examples

library(smotefamily)
library(sambia)
data.example <- sample_generator(100,ratio = 0.80)
result <- gsub('n','0',data.example[,'result'])
result <- gsub('p','1',result)
data.example[,'result'] <- as.numeric(result)
weights <- data.example[,'result']
weights <- ifelse(weights==1,1,4)
rej.sample <- sambia:::rejSamp(data=data.example, weights = weights)

smoteMod smoteMod is a modified version of the ’synthetic minority oversam-
pling technique to generate new data.

Description

This method adapts SMOTE to the context of stratified random samples. Rather than enlarging
only the minority class, smoteMod generates synthetic data for all strata with a weight bigger than
1. Note: this function has to apply SMOTE H-1 times: 1. subsample data by smallest stratum and
a stratum to oversample 2. oversample with modified SMOTE function according to weight of the
stratum 3. do this for the other H-2 to subsamples 4. build new data set with strata where H-1 strata
contain synthetic data (stratum with smallest weight remains as is)

Usage

smoteMod(data.x, stratum, weights, data.y = NULL, K)

Arguments

data.x A data frame or matrix of numeric-attributed dataset

stratum a numerical vector of the same length as the number of the rows of data. De-
pending on the number of strata variables and their number of exposures each
such combination is assigned to a numeric class id. The i-th entry of stratum
contains the class id (and therefore class belonging) of the i-th row (=observa-
tion) of data.

smoteMod 11

weights a numerical vector whose length must coincide with the number of the rows of
data. The i-th value contains the inverse-probability e.g. determines how often
the i-th observation of data shall be replicated.

data.y A vector of a target class attribute corresponding to a dataset data.x.

K The number of nearest neighbors during sampling process

Author(s)

Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl, Christiane Fuchs

Examples

simulate data for a population
require(pROC)

set.seed(1342334)
N = 100000
x1 <- rnorm(N, mean=0, sd=1)
x2 <- rt(N, df=25)
x3 <- x1 + rnorm(N, mean=0, sd=.6)
x4 <- x2 + rnorm(N, mean=0, sd=1.3)
x5 <- rbinom(N, 1, prob=.6)
x6 <- rnorm(N, 0, sd = 1) # noise not known as variable
x7 <- x1*x5 # interaction
x <- cbind(x1, x2, x3, x4, x5, x6, x7)

stratum variable (covariate)
xs <- c(rep(1,0.1*N), rep(0,(1-0.1)*N))

effects
beta <- c(-1, 0.2, 0.4, 0.4, 0.5, 0.5, 0.6)
beta0 <- -2

generate binary outcome
linpred.slopes <- log(0.5)*xs + c(x %*% beta)
eta <- beta0 + linpred.slopes

p <- 1/(1+exp(-eta)) # this is the probability P(Y=1|X), we want the binary outcome however:
y<-rbinom(n=N, size=1, prob=p) #

population <- data.frame(y,xs,x)

draw "given" data set for training
sel.prob <- rep(1,N)
sel.prob[population$xs == 1] <- 9
sel.prob[population$y == 1] <- 8
sel.prob[population$y == 1 & population$xs == 1] <- 150
ind <- sample(1:N, 200, prob = sel.prob)

data = population[ind,]

calculate weights from original numbers for xs and y

12 smoteNew

w.matrix <- table(population$y, population$xs)/table(data$y, data$xs)
w <- rep(NA, nrow(data))
w[data$y==0 & data$xs ==0] <- w.matrix[1,1]
w[data$y==1 & data$xs ==0] <- w.matrix[2,1]
w[data$y==0 & data$xs ==1] <- w.matrix[1,2]
w[data$y==1 & data$xs ==1] <- w.matrix[2,2]

draw a test data set
newdata = population[sample(1:N, size=200),]

K = 5
genData = smoteMod(data.x = data[, -which(colnames(data) %in% c('y', 'xs'))] ,
stratum = w, data.y = data$y, weights = w, K=K)

smoteNew smoteNew is a necessary function that modifies the SMOTE algorithm.

Description

smoteNewis a necessary function that modifies the SMOTE algorithm in the following ways: (1)
correct bug in original smotefamily::SMOTE() function and (2) lets the user specifiy which class to
be oversampled.

Usage

smoteNew(data.x, data.y, K, dup_size = 0, class.to.oversample)

Arguments

data.x A data frame or matrix of numeric-attributed dataset

data.y A vector of a target class attribute corresponding to a dataset X

K The number of nearest neighbors during sampling process

dup_size The number or vector representing the desired times of synthetic minority in-
stances over the original number of majority instances

class.to.oversample

Class to be oversampled

Author(s)

Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl, Christiane Fuchs

Examples

library(smotefamily)
library(sambia)
data.example = sample_generator(10000,ratio = 0.80)
genData = sambia:::smoteNew(data.example[,-3],data.example[,3],K = 5,class.to.oversample = 'p')

synthIPbag 13

synthIPbag Train a classifier via synthetic observations using inverse-probability
weights

Description

This method trains classifiers by correcting them for sample selection bias via stochastic inverse-
probability oversampling or parametric inverse-probability bagging (Krautenbacher et al 2017).
Classifiers are trained from differently resampled data whose observations are weighted by inverse-
probability weights per stratum to correct for the bias in the original sample. The so attained en-
semble of predictors is aggregated by averaging.

Usage

synthIPbag(..., learner, list.train.learner, list.predict.learner, n.bs)

Arguments

... see the parameter genSample() of package sambia.

learner a character indicating which classifier is used to train. Note: set learner=’rangerTree’
if random forest should be applied as in Krautenbacher et al. (2017), i.e. the cor-
rection step is incorporated in the inherent random forest resampling procedure.

list.train.learner

a list of parameters specific to the classifier that will be trained. Note that the
parameter ’data’ need not to be provided in this list since the training data which
the model will learn on is already attained by new sampled data produced by the
method genSample().

list.predict.learner

a list of parameters specifiying how to predict new data given the trained model.

n.bs number of bootstramp samples. This trained model is uniquely determined by
parameters ’learner’ and ’list.train.learner’.

Author(s)

Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl, Christiane Fuchs

References

Krautenbacher, N., Theis, F. J., & Fuchs, C. (2017). Correcting Classifiers for Sample Selection
Bias in Two-Phase Case-Control Studies. Computational and mathematical methods in medicine,
2017.

Krautenbacher, N., Theis, F. J., & Fuchs, C. (2017). Correcting Classifiers for Sample Selection
Bias in Two-Phase Case-Control Studies. Computational and mathematical methods in medicine,
2017.

14 synthIPbag

Examples

simulate data for a population
require(pROC)

set.seed(1342334)
N = 100000
x1 <- rnorm(N, mean=0, sd=1)
x2 <- rt(N, df=25)
x3 <- x1 + rnorm(N, mean=0, sd=.6)
x4 <- x2 + rnorm(N, mean=0, sd=1.3)
x5 <- rbinom(N, 1, prob=.6)
x6 <- rnorm(N, 0, sd = 1) # noise not known as variable
x7 <- x1*x5 # interaction
x <- cbind(x1, x2, x3, x4, x5, x6, x7)

stratum variable (covariate)
xs <- c(rep(1,0.1*N), rep(0,(1-0.1)*N))

effects
beta <- c(-1, 0.2, 0.4, 0.4, 0.5, 0.5, 0.6)
beta0 <- -2

generate binary outcome
linpred.slopes <- log(0.5)*xs + c(x %*% beta)
eta <- beta0 + linpred.slopes

p <- 1/(1+exp(-eta)) # this is the probability P(Y=1|X), we want the binary outcome however:
y<-rbinom(n=N, size=1, prob=p) #

population <- data.frame(y,xs,x)

draw "given" data set for training
sel.prob <- rep(1,N)
sel.prob[population$xs == 1] <- 9
sel.prob[population$y == 1] <- 8
sel.prob[population$y == 1 & population$xs == 1] <- 150
ind <- sample(1:N, 200, prob = sel.prob)

data = population[ind,]

calculate weights from original numbers for xs and y
w.matrix <- table(population$y, population$xs)/table(data$y, data$xs)
w <- rep(NA, nrow(data))
w[data$y==0 & data$xs ==0] <- w.matrix[1,1]
w[data$y==1 & data$xs ==0] <- w.matrix[2,1]
w[data$y==0 & data$xs ==1] <- w.matrix[1,2]
w[data$y==1 & data$xs ==1] <- w.matrix[2,2]

draw a test data set
newdata = population[sample(1:N, size=200),]

n.bs = 10

synthIPbag 15

glm
pred_glm <- sambia::synthIPbag(data = data, weights = w, type='parIP',

strata.variables = c('y', 'xs'), learner='glm',
list.train.learner = list(formula=formula(y~.),family="binomial"),

list.predict.learner = list(newdata=newdata, type="response"),
n.bs = n.bs)

roc(newdata$y, pred_glm, direction = "<")

random forest
pred_rf <- sambia::synthIPbag(data = data, weights = w, type='parIP',

strata.variables = c('y','xs'), learner='rangerTree',
list.train.learner = list(formula=formula(as.factor(y)~.)),
list.predict.learner = list(data=newdata),
n.bs = n.bs)

roc(newdata$y, pred_rf, direction = "<")

Index

costing, 2

genSample, 4

IPbag, 6
ipOversampling, 8

rejSamp, 9

smoteMod, 10
smoteNew, 12
synthIPbag, 13

16

	costing
	genSample
	IPbag
	ipOversampling
	rejSamp
	smoteMod
	smoteNew
	synthIPbag
	Index

