Package: sambia 0.1.0

sambia: A Collection of Techniques Correcting for Sample Selection Bias

A collection of various techniques correcting statistical models for sample selection bias is provided. In particular, the resampling-based methods "stochastic inverse-probability oversampling" and "parametric inverse-probability bagging" are placed at the disposal which generate synthetic observations for correcting classifiers for biased samples resulting from stratified random sampling. For further information, see the article Krautenbacher, Theis, and Fuchs (2017) <doi:10.1155/2017/7847531>. The methods may be used for further purposes where weighting and generation of new observations is needed.

Authors:Norbert Krautenbacher, Kevin Strauss, Maximilian Mandl, Christiane Fuchs

sambia_0.1.0.tar.gz
sambia_0.1.0.zip(r-4.5)sambia_0.1.0.zip(r-4.4)sambia_0.1.0.zip(r-4.3)
sambia_0.1.0.tgz(r-4.5-any)sambia_0.1.0.tgz(r-4.4-any)sambia_0.1.0.tgz(r-4.3-any)
sambia_0.1.0.tar.gz(r-4.5-noble)sambia_0.1.0.tar.gz(r-4.4-noble)
sambia_0.1.0.tgz(r-4.4-emscripten)sambia_0.1.0.tgz(r-4.3-emscripten)
sambia.pdf |sambia.html
sambia/json (API)

# Install 'sambia' in R:
install.packages('sambia', repos = c('https://nkathh.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.18 score 15 scripts 114 downloads 6 exports 33 dependencies

Last updated 7 years agofrom:193db6f14b. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 13 2025
R-4.5-winOKMar 13 2025
R-4.5-macOKMar 13 2025
R-4.5-linuxOKMar 13 2025
R-4.4-winOKMar 13 2025
R-4.4-macOKMar 13 2025
R-4.4-linuxOKMar 13 2025
R-4.3-winOKMar 13 2025
R-4.3-macOKMar 13 2025

Exports:costinggenSampleIPbagipOversamplingsmoteModsynthIPbag

Dependencies:classclicpp11dbscandplyre1071fansiFNNgenericsglueigraphlatticelifecyclemagrittrMASSMatrixmvtnormpillarpkgconfigplyrpROCproxyR6rangerRcppRcppEigenrlangsmotefamilytibbletidyselectutf8vctrswithr